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I. Fluid Mechanics: Brief Introduction - 1
• Liquid (water, oil), gas (air, propane, hydrogen), plasma (stars, interstellar clouds)

• Continuous media – particle of fluid is very small, but contains a lot of molecules

• Length scales – from nano-fluids and micro-fluids to astrophysical flow

• Multi-Physics in Fluid Mechanics
- heat/mass transfer, multiphase flow
- radiation, electrodynamics
- molecular physics, astrophysics
- …

• Methods of fluid flow studies: 
- natural observation
- laboratory experiment
- theoretical analysis
- numerical simulation



I. Fluid Mechanics: Brief Introduction - 2
• Flow states:   

(1) laminar (slow flow, parallel streamlines),   

(2) turbulent (chaotic behavior, fluctuations, strong vorticity, cascade of eddies of various scales)

 boundary layer on a flat plate           Turbulent eddies: visualization



• Scheme of cascade of turbulent kinetic energy during interaction of multiple-scale eddies 

superimposed on each other in a turbulent fluid flow 

I. Fluid Mechanics: Brief Introduction - 3

Поступление энергии 

 

Вязкая диссипация 



I. Governing equations for incompressible fluid
• Mass and momentum conservation laws – continuity and Navier–Stokes equations – to obtain the 

velocity vector ui = (u1, u2, u3) and pressure p :     

∂ui/∂xi = 0

• Reynolds number includes viscosity ν and typical velocity and length scales

• Direct numerical simulation (DNS) is possible at not very high Re numbers for simple geometry

• Reynolds-averaged Navier–Stokes (RANS) – 

   time- or ensemble-averaged equations

• Large Eddy Simulation (LES) – filtered equations

• There are problems to get accurate prediction by turbulence models based on different ways (RANS, 

LES, hybrid RANS-LES) to close the averaged or filtered Navier–Stokes and continuity equations



Scheme of eddy resolving for turbulence models

Hierarchy of models:

•Eddy-resolving methods 

(DNS, LES, hybrid RANS-

LES) yield high-fidelity 

data, but are more costly 

•Computations by steady or 

unsteady RANS models 

produce low-fidelity data, 

do not resolve turbulent 

eddies, however have lower 

computational costs



Examples of eddy-resolving model predictions
Garbaruk et al. (Computational 

HydroAeroAcouustics and 

Turbulence Laboratory, 

St. Petersburg 

Polytechnic University):

 hybrid LES-RANS (DDES) of 

flow past tandem of cylinders



Profiles of velocity field quantities 
in the fully-developed turbulent 
flow in a plane channel 
between two parallel flat walls 

at different Reynolds numbers 
Reτ (based on friction velocity 
and channel half-height)

 obtained by the advanced RANS 
model (lines), in comparison 
with high-fidelity data of DNS 
(symbols) from the paper

Lee M., Moser R.D. Direct 
Numerical Simulation of 
Turbulent Channel Flow up to 
Reτ ≈ 5200 // J. Fluid Mech. 
2015. Vol. 774. P. 395–415  

RANS Model Predictions (S.N.Yakovenko, K.C.Chang, AIAA Journal, 2019)



Vertical profiles of velocity field 
quantities in the turbulent flow 
in a plane channel with 
sudden expansion (i.e. with 
rectangular backward-facing 
steps located symmetrically 
on both parallel walls)

at Reynolds number Re = 5100 

(based on maximum inlet 
velocity and backstep height)

 obtained by advanced RANS 
models (lines), versus DNS 
data (symbols) from 

Le H., Moin P., Kim J. Direct 
Numerical Simulation of 
Turbulent Flow over a 
Backward-Facing Step // J. 
Fluid Mech. 1997. Vol. 330, P. 
349–374 

RANS Model Predictions (S.N.Yakovenko, K.C.Chang, AIAA Journal, 2019)



TURBULENCE CLOSURE UNCERTAINTIES (XC-2019)

• Level A: Dependence on discretization and steps in time and coordinates (mesh properties, numerical 
schemes, algorithms, solvers) – one needs to get numerics-independent solutions

• Level B: Uncertainty associated with initial and boundary conditions – crucial for LES and DNS

• Level C: Reynolds-stress (RANS), subgrid-scale-stress (LES) model, including its 
parameters

• Key review 1 – Xiao H., Cinella P. Quantification of model uncertainty in RANS simulations: 

A review // Progress in Aerospace Sciences. 2019. Vol. 108. P. 1-31. (XC-2019)



RANS CLOSURE UNCERTAINTIES (DIX-2019)
• Level 1: Application of time- or ensemble-averaging operators <···>, combined with nonlinearity of the 

Navier–Stokes equations [indicated as N(·) = 0], leads to undetermined set of equations, which requires 
the introduction of modeling assumptions to close the system:   <N(·)> ≠ N(<·>)

• Level 2: To develop closure, a model representation is invoked to relate the macroscopic state to the 
microscopic state and formally remove the unknowns resulting from the averaging:   <N(·)> = N(<·>) 
+M(·).   Incompressible fluid:   M(·) =  · τ∇    ( τ  is the Reynolds stress tensor)

• Level 3: Once the independent variables are selected, a specific functional form is postulated. Either 
algebraic or differential equations, denoted as P(·), are typically used to represent physical processes or 
specific assumptions. Schematically, the model is now M (w; P(w) )

• Level 4: Finally, given a complete model structure and functional form, a set of coefficients c must be 
specified to calibrate the relative importance of the various contributions in the closure. Formally the 
closure is then M (w; P(w); c) 

 a RANS prediction of a quantity of interest  q  is then in general   q = q ( N(·); M (w; P(w); c) )

 Model calibration uses measurement (or high-fidelity simulation) data for  q  in the same case, and it is 
assumed that the coefficients c are the source of uncertainty. Therefore, the calibrated model is              
                     , and the prediction accuracy is judged by the difference in q 

 This has led to proliferation of model variants and difficulty in assessing predictive capabilities.



II.   Why  DS,  AI,  ML ?   ―   Motivations
• Traditional CFD (turbulence) models within RANS and LES frameworks derived manually using 

the physical and mathematical arguments are not universal 

• Data from measurement or benchmark solutions of high-fidelity computations in DNS (Direct 
Numerical Simulation) have historically been used to calibrate engineering CFD models

• RANS models often give large discrepancy versus the data of both measurements and DNS, 
therefore, improvement of these models is still needed

• Prof. Michael Strelets told (Video-Seminar, 2018) about the opportunity to use the machine 
learning techniques to obtain automatically new CFD models using the available large data sets 
and powerful computers, instead of traditional ways of manual development of models

• Novel studies of possibility to use machine learning (ML) techniques to get automatically new 
advanced models using the available large data sets and powerful computers are started in 2013 

• Key review – Duraisamy K., Iaccarino G, Xiao H. Turbulence Modeling in the Age of 
Data // Annual Review of Fluid Mechanics. 2019. Vol. 51. P. 357-377. (DIX-2019)  

 to study ML methods to systematically inform CFD models with data, quantify/reduce model uncertainties

 a key perspective      researchers can use data-driven approaches to yield useful predictive models



STATISTICAL INVERSION (DIX-2019)

• Statistical inversion aims to identify parameters c of model M(c) given data θ with uncertainty εθ

• Statistical inference is the generalization of the calibration process described above; specifically, 
uncertainty in the experiments can be directly accounted for, and a potential discrepancy (misfit) 
between the model prediction  δ  and the data is also included.

• The calibration data can include evidence from different sources, while the objective is simply to 
represent the data. The inference is formulated in a probabilistic setting inspired by the Bayes theorem, 
and the result is a calibrated, stochastic model:

• Formally, stochasticity is a consequence of uncertainty in the measurements, the prior information on 
the calibration parameters (for example, the range or the most likely values of c), and the discrepancy 
function. 

• A prior for the discrepancy function is typically left to the intuition of the modeler and is typically 
represented in a simple mathematical form, for example, by using a Gaussian random field with 
parameters that are also estimated through the calibration process, i.e.,  δ(θ)



DATA-DRIVEN MODELING (DIX-2019)

• In the last two decades, the introduction of computationally efficient statistical inference algorithms 
has led to the possibility of assimilating large amounts of data (e.g., DNS data). 

• This has spurred interest in approaches that rely more on the available data than on traditional models; 
in other words, the emphasis is on  δ  rather than on  M.  Different choices for the functional 
representation of δ are available, with increasing focus on ML strategies. 

• Further work has been devoted toward representing the discrepancy  δ  in terms of features  η  
selected from a potentially large set of candidates. This enables representation of the resulting model 
in terms of quantities such as the mean velocity gradients, which are likely to be descriptive in a more 
general context than the one characterized by the available data. 

• Furthermore, constraints such as symmetry properties or Galilean invariance can be enforced in the 
definition of the candidate features.

• In general, data-driven models can then be expressed as



Main Research Groups 
• K. Duraisamy et al., Stanford, CA, Ann Arbor, MI, USA (starting from 2013), RANS + ML

Tracey B., Alonso J.J., Duraisamy K. Application of supervised learning to quantify uncertainties in 
turbulence and combustion modeling // AIAA Paper 2013-0259. 2013. 

Parish E.J., Duraisamy K. A paradigm for data-driven predictive modeling using field inversion and 
machine learning // J. Comp. Phys. 2016. Vol. 305. P. 758-774. 

• J. Ling et al., Livermore, CA, USA (from 2015), RANS + ML

Ling J., Kurzawski A., Templeton J. Reynolds averaged turbulence modelling using deep neural networks 
with embedded invariance // J. Fluid Mech. 2016. Vol. 807. P. 155-166.

• R. Sandberg, J. Weatheritt et al., Southampton, UK, Melbourne, Australia (from 2015)

• R. Dwight, M. Schmelzer, M. Kaandorp, A. van Korlaar et al., Delft, Netherlands (from 2018)

• M. Gawahara, Y. Hattori, Sendai, Japan (from 2017), LES + ML

• R. Maulik et al., Stillwater, OK, USA (from 2017), LES + ML

• A. Beck et al., Stuttgart, Germany (from 2018), LES + ML



FIML paradigm flowchart (van Konlaar, 2019)

U(x,y,t),  p(x,y,t)  –  velocity 

vector and pressure obtained 

by numerical solution of 

RANS model equations

β(x,y,t)  –  corrective function 

in RANS model equations

J  –  objective function 

quantifying the discrepancy 

between low-fidelity data of 

baseline RANS model and 

high-fidelity data from dataset



Baseline RANS model versus augmented ML+RANS tool

• Holland (PhD Thesis, 2019): lift coefficient of wind-turbine airfoil S809 (baseline SA model)



Baseline RANS model versus augmented ML+RANS tool

• Holland (PhD Thesis, 2019): lift coefficient of wind-turbine airfoil S809 (baseline & augmented 

models)



Baseline RANS model versus augmented ML+RANS tool

• Holland (PhD Thesis, 2019): lift coefficients of airfoils S809 and S814 (baseline & augmented models)



General Plan of ‘ML for CFD’ Studies 
• Stage 1. Choice of flow test cases, databases and datasets for these cases                     

high-fidelity data of target solutions (Y) for selected test cases

• Stage 2. Choice of baseline RANS models, 2D steady-state computations of selected test 

cases by CFD codes            input features from low-fidelity data of baseline solutions (X), 

grid-independence studies, comparison with measurement data & benchmark solutions

• Stage 3. Using the basic and advanced ML methods to reduce deviations (X – Y) between 

low- and high-fidelity data for selected tests, training of models with samples from data sets

• Stage 4. Formulation of improved RANS + ML tool, implementation of this tool in CFD codes

• Stage 5. Examination of developed RANS + ML tools and baseline models in simulations of 

new test cases with similar geometry versus high-fidelity data to check predictability of 

developed tools; extra training of developed RANS + ML tool (if needed)



Stages 1-5 of ‘ML for CFD’ Studies 
• Canonical flow test cases of simple geometries for RANS + ML model training at Stage 1-4:

 channel flows with: (a) parallel walls, (b) backward-facing step, (c) periodic hills (used by others)

• Canonical flow test cases of similar geometry for RANS + ML model verification at Stage 5:

 flows with boundary layers, wavy walls, single bumps, cubic obstacles, etc. (used by others)

• Databases and datasets for these cases, to define target solutions of high-fidelity data (Y):

 Johns Hopkins university dataset – DNS of channel flow at Reτ ≤ 5200 (Lee & Moser, 2015)

Dataset can be installed as a package in Python

 Database of European Research Community on Flow, Turbulence and Combustion (ERCOFTAC)

Different datasets, including the data of 75 measurements, 13 DNS, 5 highly resolved LES



Stage 2 of ‘ML for CFD’ Studies 

• CFD codes to produce input features from low-fidelity data (X):

 in-house codes (SU2 – Stanford University, Fluidity – Imperial College, …), 

 open source (OpenFOAM, Nek 5000, …), ANSYS Fluent/CFX, Star CD/CCM, ...

• Baseline RANS models to perform 2D steady-state runs of selected test cases for data (X):

•  k-ω SST model (Tracey et al. 2013, Weatheritt, Sandberg et al. 2015-2019, Schmelzer et al. 2019) 

 Wilcox k-ω model (Parish & Duraisamy 2016, Kaandorp, 2018, van Konlaar 2019)

 Spalart – Allmaras one-equation model (Holland et al. 2019)

 k-ε model with linear and quadratic eddy-viscosity models (Ling & Templeton 2015, 2016)

 k-ε or k-ω model with non-linear (cubic) eddy-viscosity models (new?)



Stages 3-4 of ‘ML for CFD’ Studies 
• Basic & advanced ML methods to train models with data sets and reduce deviations (X – Y):

   Support Vector Machines,   Decision Trees,   Random Forests   (Ling & Templeton 2015)

   Extended Kernel Regression, Scalar Field Regression, Symbolic Regression, Gaussian Processes 

(Tracey et al. 2013, Weatheritt & Sandberg 2015, 2016, Parish & Duraisamy 2016) 

   Evolutionary Algorithms, Gene Expression Programming    (Weatheritt & Sandberg et al. 2015-2019)

   Field Inversion and Machine Learning,   FIML    (Parish & Duraisamy 2016, van Konlaar 2019)

   FIML-Classic,   FIML-Embedded,   FIML-Direct    (Holland et al. 2019)

   Fully connected feed forward neural network (NN),   multilayer perceptron (MLP),   Tensor Basis NN, 

  Convolutional NN,   Residual NN    (Ling et al. 2016, Gawahara & Hattory 2017, Kaandorp 2018, 

Beck et al. 2018, Maulik et al. 2019, Holland et al. 2019, …)



Applications of ML Techniques in Fluid Mechanics 

Key review 3 – Brunton S.L., Noack B.R., Koumoustakos P. Machine Learning for Fluid 

Mechanics // Annual Review of Fluid Mechanics. 2020. Vol. 52. P. 477-508. (BNK-2020)

 ML techniques can extract information from data translated into knowledge about the underlying fluid mechanics 

--- extraction of flow features from high-fidelity data (measurements, DNS, LES), post-processing and 

dimensionality reduction  resulting in reduced-order models, surrogate models (efficiency, real-time work)

 ML algorithms can augment domain knowledge and automate tasks related to flow control and optimization

 A powerful information processing framework of ML can augment and transform current lines of fluid mechanics 

research and industrial applications. The confluence of first principles and data-driven approaches is 

unique and has the potential to transform both fluid mechanics and ML.



Applications of ML in Fluid Mechanics (BNK-2020) 



What is Machine Learning?What is Machine Learning?
• ML is the scientific study of algorithms and statistical models that computer systems use to perform a specific task 

without using explicit instructions, relying on patterns and inference instead (Wikipedia).

• Машинное обучение — класс методов ИИ, характерной чертой которых является не прямое решение 
задачи, а обучение в процессе применения решений множества сходных задач.

• The learning problem can be formulated as the process of estimating associations between 
inputs, outputs, and parameters of a system using a limited number of observations 
(Cherkassky & Mulier 2007). We distinguish between 

- a generator of samples, 
- the system in question, 
- and LM (Learning Machine),

• Learning process can be summarized 

as the minimization of a risk functional:

where the data x (inputs) and y (outputs) are samples from a probability distribution p, 
φ(x,y,w) defines the structure and w the parameters of the LM 

loss function L balances the various learning objectives (e.g., accuracy, simplicity, 
smoothness, etc.).



Machine learning uses data and answers to discover the rules behind a problem (Chollet, 2017)  

Supervised Learning:Supervised Learning:

• Both input and desired output data are provided. Input and output data are labeled for classification to 
provide a learning basis for future data processing. 

• The term supervised learning comes from the idea that an algorithm is learning from a training dataset, 
which can be thought of as the teacher.

• Classification

Support vector machines, Decision tree, Random forests, Neural networks, k-nearest neighbor

• Regression

Linear, Generalized linear, Gaussian Process

• Optimization and control

Genetic algorithms, Evolutionary strategies, …



Support Vector MachineSupport Vector Machiness::

• for classification or regression problems

• uses a technique called the kernel trick to transform the input 
data and then based on these transformations it finds an 
optimal boundary between possible outputs



Decision treeDecision tree::

• The predictive modeling approach 

• Decision tree as a predictive model is applied to move from 
observations about an item (represented in the branches) to 
conclusions about the item's target value (represented in 
the leaves)



Random forest:
• collection of decision trees whose results are 
aggregated into one final result

Why random?

- Each tree is trained on random subsample

- Features for each tree are selected randomly



(Logistic) regression:(Logistic) regression:

• Statistical measurement used in finance, investing, and other disciplines that attempts to 
determine the strength of the relationship between one dependent variable (usually denoted by 
Y) and a series of other changing variables (known as independent variables).



Neural Network (NN):Neural Network (NN):  

• Convolutional Neural Networks

• Simple (one-layer) Neural Network  

There are many NN Architectures, for example:



Neural Networks:Neural Networks:

• Recurrent Neural Networks



Tensor-based Neural Network Tensor-based Neural Network (Ling et al 2016)(Ling et al 2016)::

- used to find a new closure model for the Reynolds-stress tensor- used to find a new closure model for the Reynolds-stress tensor



Unsupervised Learning:Unsupervised Learning:

• Only input data (X) are available without corresponding output variables

• The goal is to model the underlying structure or distribution in the data, in order to learn more about the 
data

• In contrast to supervised learning, there is no correct answers and no teacher. 

• Algorithms are left to their own decisions to discover and extract interested features from data.



Semi-supervised Learning (Genetic Algorithms, Evolutionary Strategies, Semi-supervised Learning (Genetic Algorithms, Evolutionary Strategies, 
Generative Aversarial Network, Reinforcement Learning):Generative Aversarial Network, Reinforcement Learning):



Clustering:Clustering:

• Dividing the population or data points into a number of groups such that data points in the same groups 
are more similar to other data points in the same group than those in other groups. 

• In simple words, the aim is to segregate groups with similar traits and assign them into clusters.



Dimensionality reduction:Dimensionality reduction:
• In statistics, ML, and information theory, dimensionality reduction is the process of reducing the number of 

random variables under consideration by obtaining a set of principal variables. 

• As a result, the reduced-order models (ROM) or surrogate models are derived, similar to POD/PCA



ML tools for Fluid Dynamics. Example 1. ROM for urban flow

The plots show the Reynolds 

stresses from the high-fidelity 

model (Fluidity, LES) and 

NIROM (predicting) with 24, 96, 

192 and 382 basis functions. 

These are shown on a horizontal 

plane at a height of 15m above 

ground level.

“A reduced order model for 

turbulent flows in the urban 

environment using machine 

learning” (Xiao et al, Buiding 

and Environment, 2019)



ML tools for Fluid Dynamics. Example 2. Flow control
• Deep Reinforcement Learning to perform efficient collective swimming (Verma et al., PNAS, 2018)



ML tools for Fluid Dynamics. Example 3. Jet optimization
• Jet mixing optimization using machine learning control (Wu et al., Experiments in Fluids, 2018)



ML tools for Fluid Dynamics. Example 4. Gas & Oil Industry
• Keynote Lecture presentation at Russian Congress on Theoretical and Applied Mechanics (Ufa, 

2019)



ML tools for Fluid Dynamics. Example 5. Weather Forecast
• Keynote Lecture presentation at East European ML School (Buharest, 2019)



Climate change:Climate change:

• To facilitate work at the intersection 
of climate change and machine 
learning through resource- and 
knowledge-sharing

• To enable impactful collaborations by 
connecting machine learning experts 
and experts working in areas relevant 
to climate change through physical 
and digital platforms

• To promote discourse about best 
practices regarding the use of 
machine learning in climate change 
domains



Valuable references to learn Machine Learning and Deep Learning:Valuable references to learn Machine Learning and Deep Learning:
• Andrew Ng Course (https://www.coursera.org/learn/machine-learning)

• A Comprehensive Guide to ML (Soroush Nasiriany, Garrett Thomas, William Wang, Alex Yang)

• Practical Deep Learning for Coders (https://course.fast.ai)

1. Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. – 2-е изд., испр. – М.: ДМК Пресс, 2018. – 652 с.

2. Шолле Ф. Глубокое обучение на Python. — СПб.: Питер, 2018. — 400 с.

3. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. — СПб.: Питер, 2018. — 480 с.

4. Zhang A., Lipton Z.C., Li M., Smola A.J. Dive into Deep Learning. Release 0.7.1 (https://d2l.ai/). – Feb 13, 2020. – 904 p.
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Journals with papers on Machine Learning in Fluid Mechanics:Journals with papers on Machine Learning in Fluid Mechanics:
Papers on ML for fluid mechanics were published in arXiv (free online access) and top-rank journals: 

Annu. Rev. Fluid Mech. (14.81), PNAS (9.58), J. Fluid Mech. (3.14), Bioinspiration & Biomimetics (3.13), 
J. Comput. Phys. (2.85), Phys. Fluids (2.63), Phys. Rev. Fluids (2.44), AIAA J. (1.95) 

Nat. Energy (54.00), Nature (43.07), Nat. Commun. (11.88), Phys. Rev. Lett. (9.23), IEEE Trans. Evol. 
Comput. (8.51), IEEE Trans. Syst. Man Cybern. (7.35), Prog. Aerosp. Sci. (6.81), ACM Trans. Graph. 
(6.50), Appl. Mech. Rev. (6.14), Comput. Methods Appl. Mech. Eng. (4.82), Int. J. Heat Mass Transf. 
(4.35), Comput. Chem. Eng. (3.33), Int. J. Uncert. Quant. (3.26), J. Chem. Phys. (3.00), Int. J. Numer. 
Meth. Eng. (2.75), J. Turbomach. (2.59), Exp. Fluids (2.44), Phys. Rev. E (2.35), SIAM J. Sci. 
Comput. (2.31), IEEE Trans. Syst. Man Cybern. C (2.19), Theor. Comput. Fluid Dyn. (1.94), J. Aircraft 
(0.96)

Relevant papers on ML (not for fluid mechanics) were published in:

IEEE Trans. Neural Netw. (11.68), Neural Netw. (7.20), J. Mach. Learn. Res. (4.09), Evol. Comput. 
(3.47), Mach. Learn. (2.81), Neural Comput. (2.26)

Nature (43.07), Science (41.06), Sci. Adv. (12.80), Proc. IEEE (10.69), SIAM Rev. (7.22), IEEE Control 
Syst. Mag. (6.23), Control Eng. Pract. (3.23), IEEE Trans. Inf. Theory (3.22), Ann. Stat. (2.90), Proc. 
R. Soc. A (2.82), PLOS ONE (2.78), Chaos (2.64), J. Phys. A (2.11), J. Guid. Control Dyn. (2.06), 
SIAM J. Matrix Anal. Appl. (1.91), IEEE Computer Graphics and Applications (1.73), Nat. Comput. 
(1.33), Biol. Cybernet. (1.31), SIAM J. Math. Data Sci. (started in 2019)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

