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|. Fluid Mechanics: Brief Introduction - 1

Liquid (water, oil), gas (air, propane, hydrogen), plasma (stars, interstellar clouds)

Continuous media — particle of fluid is very small, but contains a lot of molecules
Length scales — from nano-fluids and micro-fluids to astrophysical flow

Multi-Physics in Fluid Mechanics

- heat/mass transfer, multiphase flow
- radiation, electrodynamics

- molecular physics, astrophysics

Methods of fluid flow studies:
- natural observation

- laboratory experiment

- theoretical analysis

- numerical simulation



|. Fluild Mechanics: Brief Introduction - 2

* Flow states:

(1) laminar (slow flow, parallel streamlines),

(2) turbulent (chaotic behavior, fluctuations, strong vorticity, cascade of eddies of various scales)

—> boundary layer on a flat plate Turbulent eddies: visualization
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|. Fluid Mechanics: Brief Introduction - 3

* Scheme of cascade of turbulent kinetic energy during interaction of multiple-scale eddies

superimposed on each other in a turbulent fluid flow
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|. Governing equations for incompressible fluid

* Mass and momentum conservation laws — continuity and Navier—Stokes equations — to obtain the

velocity vector u; = (u,, u,, u;) and pressure p : ) a9
O N g Op N 0 1
E— Uy = ——= I —
Ou/0x; = 0 ot T O j (g O :?

- Reynolds number includes viscosity v and typical velocity and length scales ~ fte =UL/v

* Direct numerical simulation (DNS) is possible at not very high Re numbers for simple geometry

* Reynolds-averaged Navier—Stokes (RANS) — o T W dr; . O —poij TV bz, T or, ) il
time- or ensemble-averaged equations _ 1 T
| verag quatl =1+ u = — w(ax, t)dt
' Jq
LT ) ;0
- Large Eddy Simulation (LES) — filtered equations 37 i, (i uj) = T, ' Re dxeox; | ox,
T =Wl —W; U T: J' Gix') f(x ;I’}ffx’

* There are problems to get accurate prediction by turbulence models based on different ways (RANS,
LES, hybrid RANS-LES) to close the averaged or filtered Navier—Stokes and continuity equations



Scheme of eddy resolving for turbulence models

Hierarchy of models:
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Examples of eddy-resolving model predictions
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RANS Model Predictions (S.N.Yakovenko, K.C.Chang, AIAA Journal, 2019)

Profiles of velocity field quantities
in the fully-developed turbulent
flow in a plane channel
between two parallel flat walls

at different Reynolds numbers
Re, (based on friction velocity
and channel half-height)

obtained by the advanced RANS
model (lines), in comparison
with high-fidelity data of DNS
(symbols) from the paper

Lee M., Moser R.D. Direct
Numerical Simulation of
Turbulent Channel Flow up to
Re, = 5200 // J. Fluid Mech.
2015. Vol. 774. P. 395415
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RANS Model Predictions (S.N.Yakovenko, K.C.Chang, AIAA Journal, 2019)
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Vertical profiles of velocity field
quantities in the turbulent flow
in a plane channel with
sudden expansion (i.e. with
rectangular backward-facing
steps located symmetrically
on both parallel walls)

at Reynolds number Re = 5100
(based on maximum inlet
velocity and backstep height)

obtained by advanced RANS
models (lines), versus DNS
data (symbols) from

Le H., Moin P., Kim J. Direct
Numerical Simulation of
Turbulent Flow over a
Backward-Facing Step // J.
Fluid Mech. 1997. Vol. 330, P.
349-374
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TURBULENCE CLOSURE UNCERTAINTIES (XC-2019)

Level A: Dependence on discretization and steps in time and coordinates (mesh properties, numerical
schemes, algorithms, solvers) — one needs to get numerics-independent solutions

Level B: Uncertainty associated with initial and boundary conditions — crucial for LES and DNS

Level C: Reynolds-stress (RANS), subgrid-scale-stress (LES) model, including its
parameters

Key review 1 — Xiao H., Cinella P. Quantification of model uncertainty in RANS simulations:
A review // Progress in Aerospace Sciences. 2019. Vol. 108. P. 1-31. (XC-2019)



RANS CLOSURE UNCERTAINTIES (DIX-2019)

* Level 1: Application of time- or ensemble-averaging operators <:-->, combined with nonlinearity of the
Navier—Stokes equations [indicated as N(:) = 0], leads to undetermined set of equations, which requires
the introduction of modeling assumptions to close the system:

* Level 2: To develop closure, a model representation is invoked to relate the macroscopic state to the
microscopic state and formally remove the unknowns resulting from the averaging:
Incompressible fluid: ( T is the Reynolds stress tensor)

* Level 3: Once the independent variables are selected, a specific functional form is postulated. Either
algebraic or differential equations, denoted as , are typically used to represent physical processes or
specific assumptions. Schematically, the model is now

* Level 4: Finally, given a complete model structure and functional form, a set of coefficients ¢ must be
specified to calibrate the relative importance of the various contributions in the closure. Formally the
closure is then

= a RANS prediction of a quantity of interest g is then in general

= Model calibration uses measurement (or high-fidelity simulation) data for g in the same case, and it is
assumed that the coefficients c are the source of uncertainty. Therefore, the calibrated model is

M= M(w; P(w); &, )iccuracy is judged by the difference in
= This has led to proliferation of model variants and difficulty in assessing predictive capabilities.



. Why DS, Al, ML ? — Motivations

* Traditional CFD (turbulence) models within RANS and LES frameworks derived manually using
the physical and mathematical arguments are not universal

* Data from measurement or benchmark solutions of high-fidelity computations in DNS (Direct
Numerical Simulation) have historically been used to calibrate engineering CFD models

* RANS models often give large discrepancy versus the data of both measurements and DNS,
therefore, improvement of these models is still needed

* Prof. Michael Strelets told (Video-Seminar, 2018) about the opportunity to use the machine
learning techniques to obtain automatically new CFD models using the available large data sets
and powerful computers, instead of traditional ways of manual development of models

* Novel studies of possibility to use machine learning (ML) techniques to get automatically new
advanced models using the available large data sets and powerful computers are started in 2013

* Key review — Duraisamy K., Iaccarino G, Xiao H. Turbulence Modeling in the Age of
Data // Annual Review of Fluid Mechanics. 2019. Vol. 51. P. 357-377. (DIX-2019) >

- to study ML methods to systematically inform CFD models with data, quantify/reduce model uncertainties

- a key perspective - researchers can use data-driven approaches to yield useful predictive models



STATISTICAL INVERSION (DIX-2019)

Statistical inversion aims to identify parameters ¢ of model given data J with uncertainty

Statistical inference is the generalization of the calibration process described above; specifically,
uncertainty in the experiments can be directly accounted for, and a potential discrepancy (misfit)
between the model prediction 6 and the data is also included.

The calibration data can include evidence from different sources, while the objective is simply to
represent the data. The inference is formulated in a probabilistic setting inspired by the Bayes theorem,
and the result is a calibrated, stochastic model:

M = M(w; P(w); 5) + 8 + €5

Formally, stochasticity is a consequence of uncertainty in the measurements, the prior information on
the calibration parameters (for example, the range or the most likely values of ¢), and the discrepancy
function.

A prior for the discrepancy function is typically left to the intuition of the modeler and is typically
represented in a simple mathematical form, for example, by using a Gaussian random field with
parameters that are also estimated through the calibration process, i.e.,



DATA-DRIVEN MODELING (DIX-2019)

In the last two decades, the introduction of computationally efficient statistical inference algorithms
has led to the possibility of assimilating large amounts of data (e.g., DNS data).

This has spurred interest in approaches that rely more on the available data than on traditional models;
in other words, the emphasis is on é rather than on M. Different choices for the functional
representation of 6 are available, with increasing focus on ML strategies.

Further work has been devoted toward representing the discrepancy ¢ in terms of features

selected from a potentially large set of candidates. This enables representation of the resulting model
in terms of quantities such as the mean velocity gradients, which are likely to be descriptive in a more
general context than the one characterized by the available data.

Furthermore, constraints such as symmetry properties or Galilean invariance can be enforced in the
definition of the candidate features.

A

In general, data-driven models can then be expressed as M= Miw; Plw); c(8), 808, n), €a)



Main Research Groups

K. Duraisamy et al., Stanford, CA, Ann Arbor, MIl, USA (starting from 2013), RANS + ML

Tracey B., Alonso J.J., Duraisamy K. Application of supervised learning to quantify uncertainties in
turbulence and combustion modeling // AIAA Paper 2013-0259. 2013.

Parish E.J., Duraisamy K. A paradigm for data-driven predictive modeling using field inversion and
machine learning // J. Comp. Phys. 2016. Vol. 305. P. 758-774.

J. Ling et al., Livermore, CA, USA (from 2015), RANS + ML

Ling J., Kurzawski A., Templeton J. Reynolds averaged turbulence modelling using deep neural networks
with embedded invariance // J. Fluid Mech. 2016. Vol. 807. P. 155-166.

R. Sandberg, J. Weatheritt et al., Southampton, UK, Melbourne, Australia (from 2015)

R. Dwight, M. Schmelzer, M. Kaandorp, A. van Korlaar et al., Delft, Netherlands (from 2018)
M. Gawahara, Y. Hattori, Sendai, Japan (from 2017), LES + ML

R. Maulik et al., Stillwater, OK, USA (from 2017), LES + ML

A. Beck et al., Stuttgart, Germany (from 2018), LES + ML



FIML paradigm flowchart (van Konlaar, 2019)
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Baseline RANS model versus augmented ML+RANS tool

* Holland (PhD Thesis, 2019): lift coefficient of wind-turbine airfoil S809 (baseline SA model)
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Baseline RANS model versus augmented ML+RANS tool

* Holland (PhD Thesis, 2019): lift coefficient of wind-turbine airfoil S809 (baseline & augmented

1.2 56 o0
1 L
$ 0.8 "
=
=
G 0.6
go.
'.'"_I:
0.8 R [ | [
——Experiment 7 Q4% 88 985 49 5% 1 1.5 1.1
0.2 < No Correction| -
% Augmented
9 10 15 Figure 6.19: Correction field (8) for FIML-Direct with A = 1075,
Angle of Attack (deq)

Figure 6.25: S809 augmentation lift performance for tramning set of all seven angles

of attack.



Baseline RANS model versus augmented ML+RANS tool

* Holland (PhD Thesis, 2019): lift coefficients of airfoils S809 and S814 (baseline & augmented models)
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General Plan of ‘ML for CFD’ Studies

Stage 1. Choice of flow test cases, databases and datasets for these cases -
high-fidelity data of target solutions (Y) for selected test cases

Stage 2. Choice of baseline RANS models, 2D steady-state computations of selected test
cases by CFD codes -  input features from low-fidelity data of baseline solutions (X),
grid-independence studies, comparison with measurement data & benchmark solutions

Stage 3. Using the basic and advanced ML methods to reduce deviations (X —Y) between
low- and high-fidelity data for selected tests, training of models with samples from data sets

Stage 4. Formulation of improved RANS + ML tool, implementation of this tool in CFD codes

Stage 5. Examination of developed RANS + ML tools and baseline models in simulations of
new test cases with similar geometry versus high-fidelity data to check predictability of
developed tools; extra training of developed RANS + ML tool (if needed)



Stages 1-5 of ‘ML for CED’ Studies

* Canonical flow test cases of simple geometries for RANS + ML model training at Stage 1-4:

- channel flows with: (a) parallel walls, (b) backward-facing step, (c) periodic hills (used by others)

* Canonical flow test cases of similar geometry for RANS + ML model verification at Stage 5:

- flows with boundary layers, wavy walls, single bumps, cubic obstacles, etc. (used by others)

* Databases and datasets for these cases, to define target solutions of high-fidelity data (Y):

—> Johns Hopkins university dataset — DNS of channel flow at Re, < 5200 (Lee & Moser, 2015)
Dataset can be installed as a package in Python

- Database of European Research Community on Flow, Turbulence and Combustion (ERCOFTAC)
Different datasets, including the data of 75 measurements, 13 DNS, 5 highly resolved LES



Stage 2 of ‘ML for CED’ Studies

* CFD codes to produce input features from low-fidelity data (X):
= in-house codes (SU2 — Stanford University, Fluidity — Imperial College, ...),
= open source (OpenFOAM, Nek 5000, ...), ANSYS Fluent/CFX, Star CD/CCM, ...

* Baseline RANS models to perform 2D steady-state runs of selected test cases for data (X):

* k-w SST model (Tracey et al. 2013, Weatheritt, Sandberg et al. 2015-2019, Schmelzer et al. 2019)
- Wilcox k-w model (Parish & Duraisamy 2016, Kaandorp, 2018, van Konlaar 2019)

= Spalart — Allmaras one-equation model (Holland et al. 2019)

=~ k-¢ model with linear and quadratic eddy-viscosity models (Ling & Templeton 2015, 2016)

=~ k-£ or k-w model with non-linear (cubic) eddy-viscosity models (new?)
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Stages 3-4 of ‘ML for CED’ Studies

Basic & advanced ML methods to train models with data sets and reduce deviations (X - Y):

Support Vector Machines, Decision Trees, Random Forests (Ling & Templeton 2015)

Extended Kernel Regression, Scalar Field Regression, Symbolic Regression, Gaussian Processes
(Tracey et al. 2013, Weatheritt & Sandberg 2015, 2016, Parish & Duraisamy 2016)

Evolutionary Algorithms, Gene Expression Programming (Weatheritt & Sandberg et al. 2015-2019)
Field Inversion and Machine Learning, FIML (Parish & Duraisamy 2016, van Konlaar 2019)
FIML-Classic, FIML-Embedded, FIML-Direct (Holland et al. 2019)

Fully connected feed forward neural network (NN), multilayer perceptron (MLP), Tensor Basis NN,
Convolutional NN, Residual NN (Ling et al. 2016, Gawahara & Hattory 2017, Kaandorp 2018,
Beck et al. 2018, Maulik et al. 2019, Holland et al. 2019, ...)



Applications of ML Techniques in Fluid Mechanics

Key review 3 — Brunton S.L., Noack B.R., Koumoustakos P. Machine Learning for Fluid
Mechanics // Annual Review of Fluid Mechanics. 2020. Vol. 52. P. 477-508. (BNK-2020)

2 ML techniques can extract information from data translated into knowledge about the underlying fluid mechanics

--- extraction of flow features from high-fidelity data (measurements, DNS, LES), post-processing and
dimensionality reduction = resulting in reduced-order models, surrogate models (efficiency, real-time work)

= ML algorithms can augment domain knowledge and automate tasks related to flow control and optimization

=~ A powerful information processing framework of ML can augment and transform current lines of fluid mechanics
research and industrial applications. The confluence of first principles and data-driven approaches is
unique and has the potential to transform both fluid mechanics and ML.



Applications of ML in Fluid Mechanics (BNK-2020)

Classification Regression Optimization Relnforcement Generative
and control learning models

Support vector Linear Linear control Q-learning Generative k-means POD/PCA
machines adversarial
Generalized linear Genetic Markov decision P Spectral Autoencoder

Decision trees Gaussian process algorithms processes clustering Self-organizing
Random forests Deep model Deep reinforce- maps
MNeural networks E;EEE]W e Diffusion maps
K reighbor Estimation of

distribution

algorithims

Evolutionary
strategies

Figure 1

Machine learning algorithms may be caregorized into supervised, unsupervised, and semisupervised, depending on the extent and type
of information available for the learming process. Abbreviations: PCA, principal component analysis; POL), proper orthogonal
decomposition.



What is Machine Learning?

* ML is the scientific study of algorithms and statistical models that computer systems use to perform a specific task
without using explicit instructions, relying on patterns and inference instead (Wikipedia).

* MawunHHoe obyyeHne — Knacc metoaos NN, xapakTepHOM YEPTON KOTOPbIX ABNAETCA HE NPSAMOE peLleHune
3a4a4K, a obyyeHMe B NpoLEecce NPUMEHEHUA PEeLUEHNN MHOMECTBa CXOAHbIX 3a4au.

* The learning problem can be formulated as the process of estimating associations between
Inputs, outputs, and parameters of a system using a limited number of observations
(Cherkassky & Mulier 2007). We distir

Learning
- a genel’ator Of Samp|eS, ggi?rpaltzr Input vector, x q :35:;::' Learning machine output, y >
- the system in question, Probability of formwith |«
. ) input, p(x ights w, $(x.y,
- and LM (Learning Machine), e T
* Learning process can be summarized
System
as the minimization of a risk functional: 8| E System output, y
input, p(y[x)
Y — . . wr WA - P Figure 3
R[“} T f L [:’" ? {I'-l {-1" 1’ , W ]] F{-h' ‘ } dhd}l The learning problem. A learning machine uses inputs from a sample generator and observations from a

system to generate an approximation of its output. Figure based on an idea from Cherkassky & Mulier

where the data x (inputs) and y (output@wn.
¢(x,y,w) defines the structure and w the parameters of the LM

4 - - o ) |

loss function L balances the various learning objectives (e.g., accuracy, simplicity,
smoothness, etc.).



Machine learning uses data and answers to discover the rules behind a problem (Chollet, 2017)

Supervised Learning:

* Both input and desired output data are provided. Input and output data are labeled for classification to
provide a learning basis for future data processing.

* The term supervised learning comes from the idea that an algorithm is learning from a training dataset,
which can be thought of as the teacher.

* Classification

Support vector machines, Decision tree, Random forests, Neural networks, k-nearest neighbor
* Regression

Linear, Generalized linear, Gaussian Process

* Optimization and control

Genetic algorithms, Evolutionary strategies, ...



Support Vector Machines:

* for classification or regression problems

* uses a technique called the kernel trick to transform the input
data and then based on these transformations it finds an
optimal boundary between possible outputs

gx)=wlx+b
Maximize k such that :
—w'x+b>k ford, ==

—wix+b<k ford, ==—1

Value of g(x) depends upon ||w|| :

1) Keep ||w|| = 1 and maximize g(x) or,

2) g(x) > 1 and minimize ||wl||



* The predictive modeling approach

> 2 . * Decision tree as a predictive model is applied to move from
Decision tree: observations about an item (represented in the branches) to
conclusions about the item's target value (represented in
the leaves)
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Random forest:
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* collection of decision trees whose results are
aggregated into one final result
Why random?

- Each tree is trained on random subsample

- Features for each tree are selected randomly



(Logistic) regression:

* Statistical measurement used in finance, investing, and other disciplines that attempts to
determine the strength of the relationship between one dependent variable (usually denoted by
Y) and a series of other changing variables (known as independent variables).
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A simple neural network
Neural Network (NN): input  hidden  output

layer layer layer
There are many NN Architectures, for example:

* Simple (one-layer) Neural Network =

* Convolutional Neural Networks

Feature Maps Feature Maps Feature Maps
] Feature Maps T
| | T m—
_)&E [] Boat (0.04)
| e [CJHouse (0.05)
oO— — = []Tree (09)
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+ Relu + Relu Fully Connected Layers

Output Layer



Neural Networks: v Y v,

* Recurrent Neural Networks . wi . Wi . wi
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Figure 4

Recurrent neural networks (RININs) for time series predictions and the long short-term memory (LSTM) regularization. Abbreviations:
tr—1, previous cell memory; ¢, current cell memory; by_ |, previous cell outpur, &, current cell output; 2, input vecror; o, sigmoid.
Figure based on an 1dea from Hochreiter & Schmidhuber (1997).



Tensor-based Neural Network (Ling et al 2016):

- used to find a new closure model for the Reynolds-stress tensor
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Unsupervised Learning:

Only input data (X) are available without corresponding output variables

The goal is to model the underlying structure or distribution in the data, in order to learn more about the
data

In contrast to supervised learning, there is no correct answers and no teacher.

Algorithms are left to their own decisions to discover and extract interested features from data.



Semi-supervised Learning (Genetic Algorithms, Evolutionary Strategies,
Generative Aversarial Network, Reinforcement Learning):

Deep reinforcement learning scheme

Receive reward
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Clustering:

* Dividing the population or data points into a number of groups such that data points in the same groups
are more similar to other data points in the same group than those in other groups.

* In simple words, the aim is to segregate groups with similar traits and assign them into clusters.




Dimensionality reduction:

* In statistics, ML, and information theory, dimensionality reduction is the process of reducing the number of
random variables under consideration by obtaining a set of principal variables.

* As aresult, the reduced-order models (ROM) or surrogate models are derived, similar to POD/PCA

PCA/POD Deep encoder Deep decoder
= 1 !  Encoder Decoder ,
k= 2% $(x) Y(2)
n=1 N 7,
1 NN ey
i RIS
- RN
S variables
RetainM < D
eigenvectors X Y
Input Output  Input

Figure 5

PCA/POD (feft) versus shallow autoencoders (center) and deep auroencoders (#ight). If the node acavanon funcrions in the shallow
autoencoder are linear, then U and V are matrices thar minimize the loss funcrion, ||¥ — VUx||. The node activadon functons may be
nonlinear, minimizing the loss functon, ||x — Y[cp(x)]||. The input x € B is reduced to z € BM, with M < D. Note that PCA/POD
requires the solution of a problem-specific elgenvalue equation, while the neuron modules can be extended to nonlinear activation
funcaons and mulaple nodes and layers. Abbreviations: PCA, principal component analysis; POD), proper orchogonal decompositon;
S, covarlance matrix of mean-subtracted data; U, linear encoder; v;, eigenvecror; V, linear decoder; x, input vector, x,,, #-th inpur
vector; X, mean of input dara; &, autoencoder reconstruction; z, latent variable; 3;, elgenvalue; ¢p(x), deep encoder; s(x), deep decoder.
Figure based on an 1dea from Bishop & James (1993 ).



ML tools for Fluid Dynamics. Example 1. ROM for urban flow

The plots show the Reynolds
stresses from the high-fidelity
model (Fluidity, LES) and
NIROM (predicting) with 24, 96,
192 and 382 basis functions.

02 04 06 08 1 12 14 14 18 02 04 06 08 1 13 14 146 18 02 04 05 08 1 12 14 1.4 18
These are shown on a horizontal (a) ‘High-Bdelity model (b) NIROM, 24 basis functions  (c) NIROM, 96 basis functions

plane at a height of 15m above
ground level.

“A reduced order model for
turbulent flows in the urban
environment using machine
learning” (Xiao et al, Buiding
and Environment, 2019)

pas 08 am 1 13 18 1.8 e 05 em 1 13 15 18

) NIROM, 192 basis functions (&) NIROM, 382 basis functions



ML tools for Fluid Dynamics. Example 2. Flow control

* Deep Reinforcement Learning to perform efficient collective swimming (Verma et al., PNAS, 2018)

Application to collective fish motion

b
>
gy
R
sy
-
s
Figure 8

Deep reinforcement learning schematic (@) and application to the study of the collective motion of fish via the Navier—5Stokes equations
(). Panel b adapted from Verma et al. (2018).



ML tools for Fluid Dynamics. Example 3. Jet optimization

* Jet mixing optimization using machine learning control (Wu et al., Experiments in Fluids, 2018)

Pulsed minijet

Unforced Jet

| Howwire I|  |...... J_
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= 00 Hotwire 2 :

E \ !
E cg a. Forced Jet

> ) @,

< g —

7
Control loop Conticl lave ™ '
b=H{B(s, h)} |....Learning loop :

Multi-frequency [ 7777 @ [njection %
forcing h . 01234567
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ML tools for Fluid Dynamics. Example 4. Gas & Oil Industr

* Keynote Lecture presentation at Russian Congress on Theoretical and Applied Mechanics (Ufa,




ML tools for Fluid Dynamics. Example 5. Weather Forecast

* Keynote Lecture presentation at East European ML School (Buharest, 2019)

DeepMind and the Met Office are currently
collaborating to explore Al 1 methods for

v Foreca ing of ciimate maasurements

R ISt

oreca
includmg extramme event prediction _
neuraknetwork emulatsmf numerrc.a; ‘models

fn =

nonitorin 1ol Snomaly detf?.ct*m »
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Climate change:

ICML 2019 Workshop
* To facilitate work at the intersection

of climate change and machine
learning  through resource- and
June 14/15, 2019 knowledge-sharing

Lnng Beach, California

[:LlMATE [:HANBE Huw [:AN Al HELPQ * To enable impactful collaborations by

connecting machine learning experts
AFPLYING M£CHINE LEARNING TO ADDRESS and experts working in areas relevant

Submtssmn deudllne* Ap;ll 30 and digital platforms

Web"!:fte~ WWW. cllmatechunge ai

s

* To promote discourse about best
PP o [ practices regarding the use of

David Ralnick, Alexaridre Lacoste, Tegan Maharaj machine learning in climate change
Jennifer-Chayes, Yoshua Bengio domains




Valuable references to learn Machine Learning and Deep Learning:

* Andrew Ng Course (https://www.coursera.org/learn/machine-learning)

A Comprehensive Guide to ML (Soroush Nasiriany, Garrett Thomas, William Wang, Alex Yang)

Practical Deep Learning for Coders (https://course.fast.ai)
. F'yadennoy A., bBenmpxkmo W., Kypsunnb A. mybokoe obyuveHue / nep. ¢ aHr. A. A. CnuHkuHa. — 2-e nsg., ucnp. — M.: MK lMpecc, 2018. — 652 c.
. Wonne ®. Ny6okoe obyyeHne Ha Python. — CTI16.: MNutep, 2018. — 400 c.
. Hukonenko C., KagypuH A., ApxaHrenbckas E. [mybokoe oby4denne. — CI16.: MNutep, 2018. — 480 c.
. Zhang A., Lipton Z.C., Li M., Smola A.J. Dive into Deep Learning. Release 0.7.1 (https://d2l.ai/). — Feb 13, 2020. — 904 p.

1
2
3
4
5. ®nax . MawwnHHoe obyyeHne. Hayka 1 MCKYCCTBO NOCTPOEHUS anropuTMOB, KOTOPbIE U3BMeKalT 3HaHWUs U3 AaHHbIX / nep. ¢ aHrn. — M.: MK lMpecc, 2015. 400 c.
6. M. Kubat. An Introduction to Machine Learning. — Springer, 2015. — 291 p.

7. Nils J. Nilsson. Introduction to Machine Learning: AN EARLY DRAFT OF A PROPOSED TEXTBOOK. — Stanford University, 1996 (201 p.), 1998 (179 p.).

8. XawnknH C. HenpoHHble ceTu: NOMHbIN Kypc, 2-e nsganue: MNep. ¢ aHm. — M.: UspgaTtenbckut gom «Bunbamcey, 2006. — 1104 c.

9. Cherkassky V., Mulier F.M. Learning from Data: Concepts, Theory, and Methods. — Hoboken, NJ: JohnWiley & Sons, 2007. — 538 p.

10. Scholkopf B., Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. — Cambridge, MA: MIT Press, 2002. — 626 p.
11. Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction. — Cambridge, MA: MIT Press., 2018. — 526 p.

12. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. — Boston: MIT Press, 1992. — 813 p.

13. Barber D. Bayesian Reasoning and Machine Learning. Cambridge, UK: Cambridge Univ. Press, 2012, 2015. — 642, 658 p.

14. Theodoridis S. Machine Learning: A Bayesian and Optimization Perspective. San Diego, CA: Academic, 2015. — 1050 p.

15. Loucks D., van Beek E., Stedinger J., Dijkman J., Villars M. Water Resources Systems Planning and Management: An Introduction to Methods, Vol. 2. Cham, Switz.:
Springer, 2005. — 680 p.

16. Duriez T., Brunton S.L., Noack B.R. Machine Learning Control: Taming Nonlinear Dynamics and Turbulence. Cham, Switz.: Springer, 2016. — 211 p.


https://course.fast.ai/
https://course.fast.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/

Journals with papers on Machine Learning in Fluid Mechanics:
Papers on ML for fluid mechanics were published in arXiv (free online access) and top-rank journals:

Annu. Rev. Fluid Mech. (14.81), PNAS (9.58), J. Fluid Mech. (3.14), Bioinspiration & Biomimetics (3.13),
J. Comput. Phys. (2.85), Phys. Fluids (2.63), Phys. Rev. Fluids (2.44), AIAA J. (1.95)

Nat. Energy (54.00), Nature (43.07), Nat. Commun. (11.88), Phys. Rev. Lett. (9.23), IEEE Trans. Evol.
Comput. (8.51), IEEE Trans. Syst. Man Cybern. (7.35), Prog. Aerosp. Sci. (6.81), ACM Trans. Graph.
(6.50), Appl. Mech. Rev. (6.14), Comput. Methods Appl. Mech. Eng. (4.82), Int. J. Heat Mass Transt.
(4.35), Comput. Chem. Eng. (3.33), Int. J. Uncert. Quant. (3.26), J. Chem. Phys. (3.00), Int. J. Numer.
Meth. Eng. (2.75), J. Turbomach. (2.59), Exp. Fluids (2.44), Phys. Rev. E (2.35), SIAM J. Sci.

Comput. (2.31), IEEE Trans. Syst. Man Cybern. C (2.19), Theor. Comput. Fluid Dyn. (1.94), J. Aircraft
(0.96)

Relevant papers on ML (not for fluid mechanics) were published in:

IEEE Trans. Neural Netw. (11.68), Neural Netw. (7.20), J. Mach. Learn. Res. (4.09), Evol. Comput.
(3.47), Mach. Learn. (2.81), Neural Comput. (2.26)

Nature (43.07), Science (41.06), Sci. Adv. (12.80), Proc. IEEE (10.69), SIAM Rev. (7.22), IEEE Control
Syst. Mag. (6.23), Control Eng. Pract. (3.23), IEEE Trans. Inf. Theory (3.22), Ann. Stat. (2.90), Proc.
R. Soc. A (2.82), PLOS ONE (2.78), Chaos (2.64), J. Phys. A (2.11), J. Guid. Control Dyn. (2.06),
SIAM J. Matrix Anal. Appl. (1.91), IEEE Computer Graphics and Applications (1.73), Nat. Comput.
(1.33), Biol. Cybernet. (1.31), SIAM J. Math. Data Sci. (started in 2019)
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